Improving Interoperability by Incorporating

UnitsML into Markup Languages
Ismet Celebi'®, Reinhold Schaefer®, Robert A. Dragoset' and Gary W. Kramer >

! Physics Laboratory,
National Institute of Standards and Technology,
Gaithersburg, MD, U.S.A.

? Biochemical Science Division,
National Institute of Standards and Technology,
Gaithersburg, MD, U.S.A.

Wiesbaden Computer Integrated Laboratory (WICIL),
University of Applied Sciences,
Wiesbaden, Germany

Abstract

Maintaining the integrity of analytical data over time is a challenge. Years ago, data were recorded on
paper that was pasted directly into a laboratory notebook. The digital age has made maintaining the
integrity of data harder. Nowadays, analytical data are often separated from information about how
the sample was collected and prepared for analysis and how the data were acquired. The data are
stored on digital media, while the related information about the data may be written in a paper
notebook or stored separately in other digital files. Sometimes the connection between this ”scientific
metadata” and the analytical data is lost, rendering the spectrum or chromatogram useless. We have
been working with ASTM Subcommittee E13.15 on Analytical Data to create the Analytical
Information Markup Language or AnIML -- a new way to interchange and store spectroscopy and
chromatography data based on XML (Extensible Markup Language). Recording the scientific units
associated with the analytical data and metadata is an essential issue for any data representation
scheme that must be addressed by all domain-specific markup languages. As scientific markup
languages proliferate, it is very desirable to have a single scheme for handling units to facilitate

moving information between different data domains.

At NIST, we have been developing a general markup language for units of measure that we call
UnitsML. This manuscript will describe how UnitsML is used and how it could be incorporated into

AnIML.

Page 1

Introduction

As scientific markup languages proliferate, it is very desirable to have a single scheme for handling
scientific units of measure to facilitate moving information between different domains. Since units are
always needed and are independent of the software used, it is reasonable to separate units from the
technical data. A wrong description of a measurement unit can falsify the whole experiment. Therefore,
it is important that the handling of units be fully developed so that it can be consistently incorporated
into any compatible software system. Units of measure are not only needed by laboratory automation
systems, but nearly all other application domains. Examples include: physics, chemistry, materials,
mathematics and aeronautical and space engineering. The last field had the infamous mars lander
problem. The loss of NASA’s Climate Orbiter on September 23, 1999 was traced to a measurement
unit problem. The 125 million dollar space probe was lost as it entered the orbit of Mars. Mission
managers have concluded that the cause of the mishap was confusion over the type of units used to
measure the strength of thruster firings. The problem was due to an error in communication between
the Mars Climate Orbiter spacecraft team in Colorado and the mission navigation team in California.

The peer review preliminary findings indicate that one team used English units (e.g., inches, feet,

pounds) while the other used metric units for a key spacecraft operation. " 2

Developers have requested a single language for encoding units properties in XML. At the National
Institute of Standards and Technology (NIST), we are developing a schema for encoding scientific
units and quantities in XML, named UnitsML (Units Markup Language). The development and
deployment of a markup language for units will allow for the unambiguous storage, exchange, and
processing of numeric data, thus facilitating the collaboration and sharing of information. The usage
of UnitsML in other markup languages will prevent duplication of effort and improve interoperability.
Today there are many markup languages based on XML that could incorporate UnitsML, including
MathML (Mathematics Markup Language), AnIML (Analytical Information Markup Language),
MatML (Material Markup Language), etc.

eXtensible Markup Language

XML (Extensible Markup Language) is a standard for the production of human and machine readable
documents. XML is a W3C (World Wide Web Consortium)-recommended general-purpose markup
language for creating special-purpose markup languages. A markup language is a mechanism to
describe both data and their structures in the same document. XML defines the rules for the structure
of such documents. For a concrete application ("XML application”), the details of the respective
documents must be specified. This requires the definition of the structural components and their

arrangement within the document tree. XML is therefore a standard for the definition of arbitrary

Page 2

markup languages. A markup language like XML, which is used for the definition of other languages,
is called a meta language. One of the main purposes of XML is to facilitate the sharing of data across

different systems or software modules or the sharing different types of data to be exported for

interoperability or archival purposes.e"5

Analytical Information Markup Language

Analytical Information Markup Language (AnIML), is a markup language for analytical chemistry
data that is currently under development by ASTM subcommittee E13.15. It is a combination of a
highly flexible core schema, a technique schema, and a set of analytical technique instance documents
(ATID files). The core schema defines containers for result data in a generic manner. The ATID files
are XML files, which apply tight constraints to the flexible core. Each ATID file refers to a specific
analytical technique. The organisation of ATID files is specified by the technique schema. Extensions

of ATID files are possible for vendor-specific, institutional-specific, and user-specific parameters. The

goal of AnIML is to interchange and store analytical results and their meta data.’

More information about AnIML can be found on the AnIML web site, http://WWW.animl.Org/.

Units Markup Language

Units Markup Language (UnitsML) is a general XML-based markup language for encoding scientific
units. It has a single schema for handling units, which is desirable to facilitate moving information
between different data domains. The UnitsML schema is designed for incorporating scientific units
into other XML documents or into any XML-based software. Various tools are under development to

assist in the use of UnitsML.

“The value of a quantity is its magnitude expressed as the product of a number and a unit.”” The
value of a quantity Q can be written as Q = N U, where N is the numerical value of Q when the
value of Q is expressed in the unit U (Example: length = 5 m).7 UnitsML does not describe the

numerical value; it only describes the unit.

The main requirement for use of UnitsML is the availability of its schema. It can be a problem for
each user to collect information on units and the associated quantities and to define conversions to
other units. Alternatively, users can refer to unit definitions from a third party database. Such a
database containing information on units, prefixes, and quantities encoded in the UnitsML schema is
under development at NIST. This database called UnitsDB contains detailed units and dimensionality

information for SI units and an extensive collection of common, non-SI units. The database includes

Page 3

information on units, quantities, symbols, language-specific unit names, and representations in terms

of other units, including conversion factors to reference units. In the representations table, the units
database describes all units in terms of the seven SI (International System of Units) base units.” In

addition some units are described in terms of related, appropriate units. Table 1 shows the expression

of farad in the database. Recall that a farad is a unit of capacitance equal to one coulomb per volt.

Reducing the definition of farad to SI base units gives F =C -V Tom?2. kg T.sgt A2

Base Unit Prefix Power Numerator
meter none -2

kilogram none -1

second none 4

ampere none 2

Table 1: Storage of the unit farad in UnitsDB

Figure 1 presents a few tables from UnitsDB and shows how SI-derived units are stored in the

database.

NGz

Figure 1: Storage of Sl derived units in UnitsDB

More information about UnitsML can be found on the UnitsML website, http://unitsml.nist.gov/.

More information about SI units can be found at http://physics.nist.gov/SP811/.

Page 4

Ways to incorporate UnitsML into other markup languages

UnitsML has been designed to be a component for inclusion into other markup languages. There are
several different ways to incorporate UnitsML into other markup languages. These are referencing to

the schema, including the schema, importing the schema, and redefining the schema elements.

¢ Refer to the UnitsML schema

UnitsML may be included in schema-based markup languages by referencing the UnitsML schema in
an instance document. The W3C’s recent finalization of the XML Schema specification allows greater
flexibility and specificity in defining constraints than are available with DTDs (Document Type
Definitions). One important part of using schemas is being able to reference them within other XML
documents. Making a reference from within an XML document requires a declaration of the XML
schema instance namespace, a prefix mapping (xsi), and associated URI (Uniform Resource Identifier)
to give access to the attributes needed for referencing the XML schemas. If needed, there can be
defined a default namespace to provide a home for all non-prefixed elements in the document. Once
the XML schema instance namespace is available, one can provide the schemal.ocation attribute
within it. The schemal.ocation attribute consists of two values. The first value, or argument, is the
namespace, which must be unique (URI), and the second is the actual resolvable schema location
(URL - Uniform Resource Locator). In this case, the first referenced schema location is the host
schema and the second the UnitsML schema. In the same way we could reference a third, fourth, or
additional schemas. There are many more options for referencing schemas, using them with and

without namespaces. These options are documented in the W3C XML Schema specification.

One way of incorporating UnitsML into AnIML documents by referencing is to create compound
documents that reference the AnIML core schema and UnitsML schema. An example is shown in

Listing 1.

<?xml version="1.0"?7>

<AnIML xmlns:animlcore="http://animl.sourceforge.net/CORE"™
xmlns:unitsml="http://unitsml.nist.gov/2005"
xmlns:ixsi="http://www-w3.0rg/200L/XMLSchema-instance™
xsi:schemaLocation="http://animl.sourceforge.net/CORE
http://animl-sourceforge.net/schema/animl-core-xsd
http://unitsml.nist.gov/2005
http://unitsml.nist.gov/schema/2005/unitsml.xsd"
version="1.0">

Listing 1: AnIML Core with UnitsML Schema-Referencing

Page 5

The features of UnitsML can be incorporated into XML instance documents by using the actual
UnitsML schema within the host schema. The problem with this is the availability of the UnitsML
schema. The following methods are dependent on having the UnitsML schema file (.xsd). The user
could download the UnitsML schema to make it available offline. In this case, the user is responsible

for updating the UnitsML schema, when schema updates are available on the UnitsML server. The
UnitsML tool, which is described below in “Tools under development,” should be able to warn the user

of this update and to update the offline schema. To do this some changes must be made in the host

schemas. There are three ways that this can be carried out:

¢ <include> the UnitsML schema

This directive results in the UnitsML schema being brought into the host schema within the host
schema namespace. The include element brings in definitions and declarations from the UnitsML

schema into the host schema. It requires the UnitsML schema to be in the same target namespace as

the host schema narnespace.8

<xs:tinclude schemaLocation="unitsml.xsd"/>

Listing 2 shows an example of the include method on an AnIML instance document. Compared with

the import example on Listing 3, we see the difference on namespaces.

<?xml version="1.0"?>

<AnIML xmlns:xsi="http://www-w3.0rg/200L/XMLSchema-instance"
xsitischemalLocation="http://animl.sourceforge.net/schema/animl-core.xsd"
version="1.0">

<Parameter name="SampleAmount">
<float3ie>l2.2</float32>
<UnitsML>
<UnitSet>
<Unit numericID="NISTu2?" symbolicID="g">
<System name="SI" type="SI_multiples_and_sub"/>
<UnitName lang="en-US">gram</UnitName>
</Unit>
</UnitSet>
</UnitsML>

</AnIML>

Listing 2: AnIML Core with UnitsML included in the schema

Page 6

e <import> the UnitsML schema
The import function behaves similarly to the include directive with the difference that it is possible to
import elements from other namespaces. In the example below, only the units element is imported

from the UnitsML schema. &

<xs:import namespace="http://unitsml.nist.gov/2005"
schemaLocation="unitsml.xsd"/>

<xs:i:element ref=“unitsml:units™/>

Using the import option, an AnIML data file would look like the example shown in Listing 3. It shows
that the AnIML core namespace (xmlns:animlcore) is different than the UnitsML namespace

(xmlns:unitsml) and that the units part of the document is described completely in UnitsML. The

following element of the <UnitSet> element <Unit> is defined globally in the UnitsML schema.
Therefore since this example doesn’t need information on prefixes or quantities, it is possible to use

the <Unit> element directly without using the root element <UnitsML>.

<?xml version="1.0"?>

<AnIML xmlns:animlcore="http://animl.sourceforge.net/CORE"
xmlns:unitsml="http://unitsml.nist.gov/2005"
xmlns:ixsi="http://www-w3-0rg/200L/XMLSchema-instance”
xsi:schemaLocation="http://animl.sourceforge.net/CORE
http://animl-sourceforge-net/schema/animl-core-.xsd"”
version="1.0">

<animlcore:Parameter name="SampleAmount™>
<float3ie>l2.2</float32>
<unitsml:Unit numericID="NISTu2?" symbolicID="g">
<unitsml:System name="SI" type="SI_multiples_and_sub"/>
<unitsml:UnitName lang="en-US">gram</unitsml:UnitName>
</unitsml:Unit>

</AnIML>

Listing 3: AnlML Core with UnitsML imported in the schema

e <redefine> the elements of UnitsML

The redefine directive can be used in place of the include function. This directive, however, allows
elements from the UnitsML schema to be redefined to meet current needs in the combined schema.®

<xs:redefine schemalLocation="unitsml.xsd">

The redefined elements from the UnitsML schema are placed here.

Page 7

</xs:iredefine>

The instance documents using redefined schema elements look the same as those using the include

method. An example is given in Listing 2.

AnIML is a little different than other markup languages because AnIML works with two schemas. It
has a core and a technique schema. In this case there are actually three schemas, including the
UnitsML schema. Figure 2 shows one possible method of incorporating UnitsML into AnIML. This
example requires that the AnIML client have real-time access to the internet to get the information

from the UnitsDB database.

rad .
kilogram v intensity
meter

Stored Quantities, Units and Prefixes

wavelength m / length
microvolt

joule
&
» o
O &
Q&so
Q
Response| (2. (1 \Request
So“‘Na“e
P\“\N\L
AnIML UnitsML AnIML
Core Schema Technique

e
U Xmu

AnIML Data File

Figure 2: Structural overview of incorporating UnitsML into a compound data file.
The event sequence is: 1. request; 2. response; 3. generating instance document.

Table 2 summarizes the four options for incorporating UnitsML into a host markup language.

Page 8

Incorporation Method Reference Include Import | Redefine
Different Namespace option Yes No Yes No
Redefine of elements option No No No Yes
Changes in host schema required No Yes Yes Yes

Table 2: Overview of the ways to incorporate UnitsML into a host markup language

Tools under development

We are currently working on web services to process queries that will return UnitsML code containing
information from the UnitsDB. A web service provides integration over existing internet protocols,
which makes the service compatible with most operating systems and programming languages. To use
the web service, clients are required to support the XML-based Web Service Description Language
(WDSL) and the XML-based exchange protocol SOAP (formerly Simple Object Access Protocol).
Most recently developed web services packages support these standards. Figure 3 shows how the
UnitsML web services will work. The service information could be published using the XML-based
UDDI (Universal Description, Discovery, and Integration) protocol. Applications can look up web
services information to determine options to use. The public interface to the web service is described
by the WSDL, an XML-based service description on how to communicate using the web service. After
the client receives the information describing the services, the communication between client and
server uses the SOAP protocol. The services in the UnitsML Server will be written in Java and will
use the JDBC (Java Database Connectivity) driver to communicate with the database. The internal

processing of the XML file in the UnitsML Server will be done using XML tools such as, a data

binding framework, SAX (Simple API for XML), and DOM (Document Object Model). *®

Page 9

.
’I ’ UDDI

/ Service |
Catalog
WsDL WsDL

4 'Y

= [s0ap § f@/

UnitsML Service
Service Requester

.v ‘e

Figure 3: UnitsML Web Services

We are also working on a solution to manage offline-stored units information in UnitsML for clients
lacking a real-time internet connection. With this tool, users can manage their own copies of UnitsML
data and will not be constantly dependent on access to UnitsDB. The ability to edit and view
available unit information without specific XML knowledge will make the use of UnitsML easier. The
ability of the tool to connect to the UnitsML web services and update the offline available unit
information is intended. Development of the UnitsML schema has initially taken place at NIST, but
completion of the development process should also include input from the international scientific and
engineering community. To this end, an OASIS Technical Committee has been created to address any

needed changes in the schema and to publish a final recommendation for UnitsML.

Disclaimer

Certain commercial software products are identified in this document. Such identification does not
imply recommendation or endorsement by the National Institute of Standards and Technology, nor

does it imply that the products identified are necessarily the best available for the purpose.

Acknowledgments

The authors would like to thank Alexander Roth, Ronny Jopp, Jens Bakoczy, Burkhard Schaefer and
the NIST UnitsML working group. Special thanks to Karen Olsen and Peter Lindstrom for their
valuable suggestions and support during the development and implementation. This project is funded

by NIST’s Systems Integration for Manufacturing Applications (SIMA) Program. SIMA supports

Page 10

NIST projects, applying information technologies and standards-based approaches to manufacturing

software integration problems.

References

1. NASA Mars Polar Lander. http://mars.jpl.nasa.gov/msp98 /news/mco990930.html (accessed
April 2006)

2. Lloyd, R. Metric mishap caused loss of NASA orbiter; CNN News
http://www.cnn.com/TECH /space/9909/30/mars.metric.02/ (accessed April 2006)

3. Monson-Haefel, R. J2EE Web Services; Addison Wesley: Boston, MA, 2005, Vol. 4, pp 6-32

4. Wikipedia the free encyclopedia. http://en.wikipedia.org/wiki/Xml (accessed April 2006)

5. Harold, E. R. Processing XML with Java; Addison Wesley: Boston, MA, 2005,
Vol. 3, pp 57-119

6. Schaefer, B. A.; Poetz, D.; Kramer, G. W. Documenting laboratory workflows using the
Analytical Information Markup Language. JALA 2004, 9(6), p 375

7. Taylor, B. N. Guide for the Use of the International System of Units (SI); NIST Special
Publication 811; National Institute of Standards and Technology: Gaithersburg, MD, 1995

8. Thompson, H. S.; Beech, D.; Maloney, M.; Mendelsohn, N. XML Schema Part 1 - Structures
Second Edition. http://www.w3.org/TR /xmlschema-1/ (accessed May 2006)

Page 11

